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Abstract 
 

We present Swift, a system that combines a novel 
scripting language called SwiftScript with a powerful 
runtime system based on CoG Karajan, Falkon, and 
Globus to allow for the concise specification, and 
reliable and efficient execution, of large loosely 
coupled computations. Swift adopts and adapts ideas 
first explored in the GriPhyN virtual data system, 
improving on that system in many regards. We 
describe the SwiftScript language and its use of XDTM 
to describe the logical structure of complex file system 
structures. We also present the Swift runtime system 
and its use of CoG Karajan, Falkon, and Globus 
services to dispatch and manage the execution of many 
tasks in parallel and Grid environments. We describe 
application experiences and performance experiments 
that quantify the cost of Swift operations. 
 
1. Introduction 
 

A common pattern in scientific computing 
involves the execution of many tasks that are coupled 
only in the sense that the output of one may be passed 
as input to one or more others—for example, as a file, 
or via a Web Services invocation. While such “loosely 
coupled” computations can involve large amounts of 
computation and communication, the concerns of the 
programmer tend to be different than in traditional high 
performance computing, being focused on 
management issues relating to the large numbers of 
datasets and tasks (and often, the complexities inherent 
in “messy” data organizations) rather than the 
optimization of interprocessor communication. 

Consider this painful but familiar scenario: A 
neuroscientist needs to analyze ten thousand functional 
magnetic resonance imaging (fMRI) files. The analysis 
program is a complex Perl script. Files are stored in a 
collection of UNIX directories, with metadata coded in 
directory and file names. Local computing facilities 

are inadequate. Thus, the scientist must manually 
extract files, copy them to a remote cluster, start a 
home-grown script to dispatch tasks, and check exit 
codes and output files to see which tasks succeeded 
and failed. And when the computation is completed, the 
problem remains of documenting what was done. 

Such difficulties motivated our design of Swift, a 
parallel programming system that integrates the 
following elements to address these difficulties: 
• A scripting language, SwiftScript, allows users to 

express operations on datasets in terms of their 
logical organization; the XML Dataset Typing and 
Mapping (XDTM) [10] notation is used to define 
a mapping between that logical organization and 
the underlying physical structure. 

• An execution engine, CoG Karajan [9], a 
lightweight provisioning and submission system, 
Falkon [13], and a compiler and associated 
libraries, execute tasks specified via SwiftScript 
programs on local or remote computers. 

• A provenance-recording component, Kickstart 
[18], captures execution details for diagnosis and 
eventual recording in a provenance database. 
These elements allow a few lines of SwiftScript to 

specify computations involving large numbers (tens or 
hundreds of thousands) of files and tasks, and for those 
computations to be executed efficiently and reliably on 
many distributed computers. The impact on end users 
such as our unfortunate neuroscientist can be enormous. 
Code sizes can be reduced by an order of magnitude or 
more [19]. In one example, a 160-member climate 
model ensemble took 2.5 months when performed 
manually; a 250-member ensemble was finished within 
4 days—admittedly on a faster computer—when 
automated with a precursor to Swift [11]. Other users 
are found in the physical, biological, and social 
sciences, and in the humanities and science education. 

Swift grew out of the Virtual Data System (VDS) 
[7], which integrated a simple virtual data language, 
planners (including Pegasus [6]) for program 



optimization and scheduling, DAGMan for task 
management [4], kickstart, and a virtual data catalog 
[20]. Swift improves on VDS in its use of XDTM to 
define logical views of datasets; SwiftScript and CoG 
Karajan support for iteration operations, which allow 
for more concise specifications of computations over 
larger datasets; and Falkon for efficient task dispatch. 

The rest of this paper is organized as follows. We 
introduce SwiftScript and the Swift system design in 
Sections 2 and 3. We present system evaluation results 
and applications in Sections 4 and 5. We discuss 
related work in Section 6, and summarize in Section 7.  

 
2. Notation: SwiftScript and XDTM 
 

The need to process numerous tasks reliably and 
efficiently arises, for example, when performing large-
scale data analysis or executing many computations to 
study sensitivity to parameter values (in parameter 
studies) and/or initial conditions (in ensemble 
simulations). Users often struggle with bookkeeping 
tasks due to numerous tasks, datasets, and resources. 

Users can benefit from a concise and readable 
notation that simplifies the description, maintenance, 
and debugging of problem specifications. Such a 
notation can also facilitate high-performance execution 
by revealing opportunities for concurrent execution. 
Conventional scripting languages such as UNIX Shell 

or Perl, frequently used to implement the applications 
that we target, are not concise, readable, easily 
parallelizable or analyzable, and are not amenable to 
the automation of provenance tracking. We overcome 
these problems with XDTM and SwiftScript. 

 
2.1. XDTM 
 

Even logically simple applications can become 
complicated when they  “messy” data is stored in odd 
formats and storage organizations. For example, 
compare the logical and physical layouts in Figure 1. 
The logical organization is a clean hierarchy of studies, 
groups, subjects (patients), runs (series of volumes), 
and volumes (brain scans), while the physical layout is 
a complex mix of directory structures and files [8]. (It 
is not obvious that ‘/knottastic’ is a Study, containing 
Group ‘AA’, in turn containing Subject ‘04nov06aa,’ 
etc.) The result, without Swift, is often complex and 
hard-to-maintain application orchestration code.  

We address this problem by using XDTM, which 
allows logical datasets to be defined in a manner that is 
independent of the datasets’ concrete physical 
representations. XDTM employs a two-level 
description of datasets, defining separately via a type 
system based on XML Schema the abstract structure of 
datasets, and the mapping of that abstract data structure 
to physical representations. 

 
Figure 1: fMRI logical data structure (left) vs. physical file system layout (right) 

./knottastic 
total 58 
drwxr-xr-x  4 yongzh users 2048 Nov 12 14:15 AA 
drwxr-xr-x  4 yongzh users 2048 Nov 11 21:13 CH 
drwxr-xr-x  4 yongzh users 2048 Nov 11 16:32 EC 
 
./knottastic/AA: 
total 4 
drwxr-xr-x  5 yongzh users 2048 Nov  5 12:41 04nov06aa 
drwxr-xr-x  4 yongzh users 2048 Dec  6 12:24 11nov06aa 
 
. /knottastic//AA/04nov06aa: 
total 54 
drwxr-xr-x  2 yongzh users  2048 Nov  5 12:52 ANATOMY 
drwxr-xr-x  2 yongzh users 49152 Dec  5 11:40 FUNCTIONAL 
 
. /knottastic/AA/04nov06aa/ANATOMY: 
total 58500 
-rw-r--r--  1 yongzh users      348 Nov  5 12:29 coplanar.hdr 
-rw-r--r--  1 yongzh users 16777216 Nov  5 12:29 coplanar.img 
 
. /knottastic/AA/04nov06aa/FUNCTIONAL: 
total 196739 
-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0001.hdr 
-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0001.img 
-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0002.hdr 
-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0002.img 
-rw-r--r--  1 yongzh users     348 Nov  5 12:32 bold1_0003.hdr 
-rw-r--r--  1 yongzh users  409600 Nov  5 12:32 bold1_0003.img



type Study {       type Run {  
Group g[ ];                    Volume v[ ]; 

}       } 
 
       type Volume { 
type Group {              Image img; 
   Subject s[ ];             Header hdr;  
}       } 
    
       type AirVector { 
type Subject {              Air a[ ]; 
   Volume anat;      }  
   Run run[ ];   
}        
 
(Run resliced) reslice_wf ( Run r) { 
     Run yR = reorientRun( r , "y", "n" ); 
     Run roR  = reorientRun( yR , "x", "n" ); 
     Volume std = roR.v[1]; 
     AirVector roAirVec =  
          alignlinearRun(std, roR, 12, 1000, 1000, "81 3 3"); 
     resliced = resliceRun( roR, roAirVec, "-o", "-k"); 
} 

reorientRun 

reorientRun 

alignlinearRun

resliceRun 

 
Figure 2 A Swift program (fragment) and the resulting task graph 

A dataset’s logical structure is specified via a 
subset of XML Schema, which defines primitive scalar 
data types such as Boolean, Integer, String, Float, and 
Date, and also allows for the definition of complex 
types via the composition of simple and complex types. 
The use of XML Schema as a type system has the 
benefit of supporting powerful standardized query 
languages such as XPath in our selection methods. 

A dataset’s physical representation is then defined 
by a mapping descriptor, which describes how each 
element in the dataset’s logical schema is stored 
in/fetched from physical structures such as directories, 
files, and database tables. To permit reuse for different 
datasets, mapping descriptors may refer to external 
parameters for such things as dataset location(s). 

We use a virtual integration approach to 
implement the mapping mechanism. Each data source 
is regarded as a virtual XML source, with its structure 
described in an XML Schema. A mapper is responsible 
for accessing the data source and converting its data 
to/from an XML document or stream that conforms to 
the XML schema. The case is somewhat different from 
a traditional data integration approach, since we need 
to deal with writing/updating to data sources as well as 
querying them. 

We define a standard mapping interface so that 
different data providers can implement the interface to 
support access to various data representations. We 
provide default mapping implementations for string 
mapping, file system mapping, and CSV (comma 
separated-value) files. 
 

2.2. SwiftScript 
 

The SwiftScript scripting language builds on 
XDTM to allow for the definition of typed data 
structures and procedures that operate on such data 
structures. SwiftScript procedures define logical data 
types and operations on those logical types; the 
SwiftScript implementation uses mappers to access the 
corresponding physical data. In addition to providing 
the usual advantages of strong typing (type checking, 
self-documenting code, etc.), this approach allows 
SwiftScript programs to express opportunities for 
parallel execution easily, for example by applying 
transformations to each component of a hierarchically 
defined logical structure. 

As an example, the logical structure of the fMRI 
dataset shown in Figure 1 can be represented by the 
SwiftScript type declarations in the upper left of Figure 
2. Here, Study is declared as containing an array of 
Group, which in turn contains an array of Subject, etc. 
Similarly, an fMRI Run is a series of brain scans called 
volumes, with a Volume containing a 3D image of a 
volumetric slice of a brain image, represented by an 
Image (voxels) and a Header (scanner metadata). 

Figure 3 includes two example procedures. We 
examine reorientRun first. This is what we call a 
compound procedure, meaning it calls one or more 
other SwiftScript procedures. Note the typed input 
arguments (to the right of the procedure name) and 
output argument (to the left). The procedure takes in a 
run ir and applies the procedure reorient (which rotates 
a brain image along a certain axis) to each volume in 



the run to produces a reoriented run or. Because the 
multiple calls to reorient operate on independent data 
elements, they can proceed in parallel.  

The procedure reorient in Figure 3 is atomic, 
corresponding to an invocation of an executable 
program or a Web Service. This procedure has typed 
input parameters iv, direction and overwrite and one 
output ov. The body of this particular procedure 
specifies that it invokes a program (conveniently, also 
called reorient) that will be dynamically mapped to a 
binary executable. (This executable will execute at an 
execution site chosen by the Swift runtime system.) 
The body also specifies how input parameters map to 
command line arguments. The notation @filename is a 
built-in mapping function that maps a logical data 
structure to a physical file name. 

 
Figure 3 fMRI procedure declarations 

A compound procedure can also comprise a series 
of procedure calls, using variables or datasets to 
establish data dependencies. Such procedures can 
themselves be called by other procedures, thus defining 
a potentially large and complex execution graph. 

The procedure reslice_wf (Figure 2, lower left) 
applies reorientRun to a run first in the x axis and then 
in the y axis, and then aligns each image in the 
resulting run with the first image. The program 
alignlinear determines how to spatially adjust an 
image to match a reference image, and produces an air 
parameter file. The actual alignment is done by the 
program reslice. Note that variable yR, being the 
output of the first step and the input of the second step, 
defines the data dependencies between the two steps. 
More complex procedures can be composed in a 
similar fashion, using iterations and other constructs.  

The reslice_wf example defines a simple four-step 
pipeline computation. The pipeline is illustrated in the 
center of Figure 2, while on the right we show the 
expanded graph for a 20-volume run. Each volume 
comprises an image file and a header file, so there are a 

total of 40 input files and 40 output files. We can also 
apply the same procedure to a run containing hundreds 
or thousands of volumes. 

SwiftScript allows concise definitions of logical 
data structures and logical procedures that operate on 
them, and complex computations to be composed from 
simple and compound procedures. Its support for 
nested iterations can allow a compact SwiftScript 
program (for example, a nested set of iterations that 
applies the program reorient to each volume in a whole 
Study) to express hundreds of thousands of parallel 
tasks. We have shown that SwiftScript programs can 
be at least an order of magnitude smaller in lines of 
code than other approaches such as Shell scripts and 
directed acyclic graph specifications [19].  
 
3. Implementation (Volume ov) reorient (Volume iv, string direction,  

                                                      string overwrite) { 
        app { 
                reorient  @filename(iv.hdr)  

               @filename(ov.hdr)  
 direction  
 overwrite; 

        } 
} 
 
(Run or) reorientRun (Run ir, string direction,  
                                                string overwrite) { 
        foreach Volume iv, i in ir.v { 
                or.v[i] = reorient (iv, direction, overwrite); 
        } 
} 

 
The Swift runtime system (see Figure 4) is a 

scalable environment for efficient specification, 
scheduling, monitoring and tracking of SwiftScript 
programs. We describe its components one by one. 

Program specification: computations defined in 
SwiftScript programs are compiled by a SwiftScript 
compiler into abstract computation plans, which can be 
scheduled for execution by the execution engine. 

Scheduling: Swift uses CoG Karajan as its 
execution engine. Karajan provides libraries for data 
transfer, task submission, and Grid services access. 
Such operations can be organized using language 
constructs such as sequential and parallel execution, 
sequential and parallel iterations, conditional execution 
and functional abstraction etc. We extend Karajan with 
libraries to support the XDTM type system and logical 
dataset manipulation, adapters to access legacy VDS 
components (for instance, site catalog), mappers for 
accessing heterogeneous physical data storage, and 
fault tolerance mechanisms. Karajan uses light-weight 
threading techniques to instantiate and dispatch tasks, 
and thus can execute large task graphs (see Section 4).  

Execution: Abstract execution plans are 
interpreted and dispatched by Karajan onto execution 
sites. These abstract plans do not specify execution 
location: tasks are dispatched to virtual nodes, which 
can be bound variously to personal desktops, clusters, 
and distributed Grids. Specifics such as site selection, 
data stage-ins and stage-outs, and error checking are 
determined at runtime. Callouts allow customized 
functions to determine where to dispatch tasks, how to 
group tasks to increase granularity, and/or when and 
how to perform data staging operations. Swift also 
supports advanced scheduling and optimization 
methods, such as load balance, fault tolerance, and 
computation restart. 
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Figure 4 Swift system diagram 

Provenance tracking: Individual tasks are 
invoked by a launcher program (e.g., kickstart) which 
monitors execution and gathers provenance 
information. We plan to record this information in a 
virtual data catalog, as in VDS. 

Provisioning: Tasks determined to be executable 
by Karajan can be submitted directly, via a GRAM 
submission, to a (local or remote) scheduler for 
execution; in this way, resource provisioning and task 
submission are handled together. The Swift 
architecture also allows for those two functions to be 
separated. Specifically, a dynamic resource provisioner 
(right hand side of figure) can interact with local or 
remote computing systems to get computing resources, 
and then deploy task execution services onto those 
resources. The execution services then interact with a 
task queue service to obtain tasks to execute. Falkon 
provides implementations of these functions.  

 
4. Evaluation 
 

We report on experiments that evaluate the 
performance of various elements of the Swift system. 

We consider first the size of the computations that 
can be executed correctly. Figure 5 shows the 
maximum number of tasks (measured by the number of 
nodes in a task graph) that Swift can process and 
dispatch with certain amount of available memory. The 
system can support about 4000 nodes with 32MB of 
memory and 160,000 nodes with 1GB memory. 

Swift addresses reliability issues at several levels. 
At the software development level, its type checking 
capabilities allow it to identify potential problems in a 
program prior to execution. Its support for virtual 
nodes makes it easy to first test a program on a local 

host with a small set of datasets, and then move to 
larger problems and execution sites. 
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Figure 5 Swift system scalability 

During execution, the underlying Karajan engine 
supports flexible exception handling mechanism. 
Transitory problems are recovered by retrying the 
faulty tasks (for instance, retry a transfer if a GridFTP 
server is busy), and host level faults (where a resource 
exhibits problems with unknown duration) are dealt 
with by rescheduling a task on a different site.  

Swift also keeps a restart log, allowing it to 
resume the state of a computation in case of premature 
termination (for instance, caused by a machine reboot). 
We have tested restartability by repeatedly interrupting 
program execution, and verified that our programs 
continue from where they were interrupted. We also 
note some (good) side effects to this mechanism: (1) 
new inputs can be added after a computation has been 
run for some time, and once we restart the computation, 
the system is able to figure out that these new inputs 
are present and not processed, and thus schedule their 
executions. (2) We can make modifications to a 
program and restart it, as long as the modifications do 
not affect data flows that have already happened. This 



effect is useful for debugging and testing purposes. The 
Swift restart log is similar to a Condor rescue DAG, 
except that Condor tags tasks that are finished, whereas 
we log datasets that are produced successfully. 

Swift uses three mechanisms to improve efficiency: 
Pipelining: the immediate dispatch of dependent 

tasks, even if in a different “foreach” block. Swift’s 
data-driven model means that once an item in a 
collection is processed, any processes dependent on 
that item can proceed immediately, without waiting for 
the whole collection to finish. 

Clustering: many scientific computations 
comprise many short tasks. (For example, the reorient 
program in the fMRI example runs in a few seconds.) 
The initialization and scheduling of such tasks can 
pose significant overheads. Thus, we (optionally) 
bundle groups of (mostly independent) tasks and 
submit them as a single task.  

Pluggable execution providers: The CoG 
Karajan resource provider interface allows Swift to 
schedule tasks to computers via different mechanisms. 
We used existing local host, cluster scheduler, and 
GRAM  providers, and implemented a new provider 
for the Falkon (Fast and Lightweight Task Execution) 
tools [13]. Falkon supports the efficient execution of 
many small tasks in batch scheduled environments.  
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Figure 6 Swift speedup with Falkon provider 

Figure 6 shows speedups measured for synthetic 
tasks with Falkon. Swift executed computations 
comprising 960 test (“sleep”) tasks from a submit host 
at the University of Chicago (UC_SUB) to a Falkon 
service running on the TeraGrid ANL cluster. We 
varied the sleep durations and also configured Falkon 
to use different number of nodes for task execution. 
The ideal speedup is equal to the number of nodes used. 
We see that Falkon can operate efficiently even when 
tasks are short. On 48 nodes, Swift+Falkon can achieve 
close to 47 times speedup for 32-second tasks. 

Figure 7 shows Swift throughput with the Falkon 
provider. Falkon ran on the TeraGrid ANL site and we 
submitted both from a separate node within that cluster 
(ANL ANL) and from UC_SUB (UC ANL). We 

measured throughput, defined as the number of sleep(0) 
tasks completed per second. Swift was able to achieve 
up to 56 tasks/second in the LAN setting and 46 
tasks/second in the remote setting. The scheduling of 
each sleep task actually involved many extra steps such 
as site selection, execution directory set up, exit code 
checking, and clean up. However, we improve 
throughput relative to GRAM+ PBS (which achieves 
around two tasks per second) by a factor of 23. 
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Figure 7 Swift throughput with Falkon provider 

We also measured turnaround time for the fMRI 
workflow of Figure 1, with various input sizes (number 
of volumes) and different scheduling strategies. We 
submitted from UC_SUB to the TeraGrid ANL cluster. 
Results are in Figure 8; error bars indicate the standard 
deviation of measurements. 
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Figure 8 Execution time for the fMRI workflow 

Since for each volume, each individual task 
required just a few seconds, it is inefficient to schedule 
each task over GRAM+PBS, since the overhead of 
PBS resource allocation is large relative to the short 
execution time. GRAM+PBS submission had low 
throughput although it could have potentially used all 
the available nodes on the site. With clustering, 
execution time was reduced by up to four times (tasks 
were bundled into roughly 8 groups), as the overhead 
was amortized by the bundled tasks. Falkon (with 8 
worker nodes) further reduced execution time by 40-
70%, as each task was dispatched efficiently.  

 



5. Swift Applications 
 

Swift has been applied to applications in the 
physical, biological, and social sciences, the 
humanities, and science education. We summarize 
some applications and their scales in Table 1. For each, 
we give the number of tasks in a typical analysis run 
and the number of levels (or stages) in such analyses. 

 
6. Related Work 
 

The MapReduce [5] tool for parallel computations 
is limited to processing key-value based data, and the 
runtime environment requires Google File System. 
Swift targets scientific applications that process 
heterogeneous data formats, and can schedule 
computations in a location-independent way. 

Table 1: Example Swift applications 
Application #Tasks/ 

Run 
#Levels 

fMRI AIRSN Processing 100s 12 

fMRI Aphasia Study 500 4 

NVO/NASA Photorealistic 
Montage 

1000s 16 

QuarkNet/I2U2 
Physics Science Education 

10s 3-6 

Radiology Classifier Training 1000s 5 
SIDGrid EEG Wavelet 
Processing, Gaze Analysis 

100s 20 

Pegasus [6] and DAGMan [4] can also schedule 
large scale computations in Grid environments. 
DAGMan provides a workflow engine that manages 
Condor tasks organized as directed acyclic graphs 
(DAGs) in which each edge corresponds to an explicit 
task precedence. It has no knowledge of data flow, and 
in distributed environments works best with a higher-
level, data-cognizant layer. DAGMan also lacks 
dynamic features such as iteration or conditional 
execution. Pegasus is primarily a set of DAG 
transformers that can translate a workflow graph into a 
location-specific DAGMan input file; prune tasks for 
files that exist; select sites for tasks; and cluster tasks 
based on various criteria. The planners must operate on 
an entire workflow statically, and execution sites may 
not be changed after a workflow is processed, which 
can be long before a task runs, a strategy that may not 
work well in dynamic environments. 

BPEL [3] is used primarily for service 
composition and orchestration. Early versions lacked 
support for iteration which would result in large 
programs; this problem is addressed in the new version 

2.0. In addition, its complex XML is cumbersome to 
write compared with our compact scripting language.  

Taverna [12], Triana [17], and Kepler [1] have 
also been applied to scientific problems. However, they 
do not abstract dataset types or provide location 
transparency. Data movement and Grid task 
submission all need to be specified explicitly. Their 
support for multi-site Grid execution is limited. 

As discussed earlier, Swift uses CoG Karajan [9] 
libraries and primitives for task scheduling, data 
transfer, and Grid task submission. Swift adds support 
for high-level abstract specification of large parallel 
computations, data abstraction, and workflow restart, 
and also (via Falkon and Globus) fast, reliable 
execution over multiple sites. 

 
7. Summary and Future Work 
 

Swift addresses important end-to-end issues in 
large-scale loosely coupled parallel computation. It 
imposes elegant order on a messy complex world of 
distributed and failure-prone applications. It provides a 
clean separation of logical data structures and physical 
storage formats, a scripting language for concise 
specification and composition of complex workflows, 
and a scalable runtime system that can manage and 
dispatch hundreds of thousands of tasks onto a variety 
of parallel and distributed computation facilities.  

Swift provides a wide range of capabilities to 
support the formulation, execution and management of 
large compute- and data- intensive computations: 

Scalability: Swift has demonstrated large-scale 
execution of large computations on both parallel 
computers and distributed systems.  

Scripting: Scientists often seem to prefer scripting 
languages. SwiftScript meets this need with a simple, 
familiar, and expressive notation. 

Dataset typing and iteration: Swift allows the 
declaration of logical data structures and typed 
procedures that iterate over such datasets. Nested  
iterations can easily scale to thousands or even millions 
of data objects and associated tasks.  

Dataset mapping is critical for automating task 
execution with location independence. Systems need to 
know how to access dataset components and how to 
pack datasets and transport them to an execution site. 
Swift’s dataset layout description model allows users 
to work at a clean abstract level.  

Application service interoperability: Swift can 
integrate both service-oriented and command-oriented 
applications. While services are gaining adoption, most 
scientists still use non service-oriented applications. 
Swift provides a bridge between these two models. 



Provenance and annotation: Swift integrates 
provenance and annotation with computation through a 
language that makes data flow explicit and trackable, 
and a catalog (soon to be integrated) that records data 
derivation activities. 

This unique combination of features enables the 
automation of scientific data and workflow 
managements, and improves usability and productivity 
in scientific applications and data analyses. 

We continue to work to improve Swift’s usability, 
functionality, and scalability. In particular, we are 
working on streamlining SwiftScript’s application 
interface, and on integrating VDS data provenance 
structures to represent programs, metadata, and 
runtime provenance [19], to support a wide range of 
provenance queries [20]. We are also benchmarking 
system components with large scale application runs. 
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